Factors influencing optic nerve head biomechanics.
نویسندگان
چکیده
PURPOSE The biomechanical environment within the optic nerve head (ONH) may play a role in retinal ganglion cell loss in glaucomatous optic neuropathy. This was a systematic analysis in which finite element methods were used to determine which anatomic and biomechanical factors most influenced the biomechanical response of the ONH to acute changes in IOP. METHODS Based on a previously described computational model of the eye, each of 21 input factors, representing the biomechanical properties of relevant ocular tissues, the IOP, and 14 geometric factors were independently varied. The biomechanical response of the ONH tissues was quantified through a set of 29 outcome measures, including peak and mean stress and strain within each tissue, and measures of geometric changes in ONH tissues. Input factors were ranked according to their aggregated influence on groups of outcome measures. RESULTS The five input factors that had the largest influence across all outcome measures were, in ranked order: stiffness of the sclera, radius of the eye, stiffness of the lamina cribrosa, IOP, and thickness of the scleral shell. The five least influential factors were, in reverse ranked order: retinal thickness, peripapillary rim height, cup depth, cup-to-disc ratio, and pial thickness. Factor ranks were similar for various outcome measure groups and factor ranges. CONCLUSIONS The model predicts that ONH biomechanics are strongly dependent on scleral biomechanical properties. Acute deformations of ONH tissues, and the consequent high levels of neural tissue strain, were less strongly dependent on the action of IOP directly on the internal surface of the ONH than on the indirect effects of IOP on the sclera. This suggests that interindividual variations in scleral properties could be a risk factor for the development of glaucoma. Eye size and lamina cribrosa biomechanical properties also have a strong influence on ONH biomechanics.
منابع مشابه
Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics
Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the op...
متن کاملCollagen microstructural factors influencing optic nerve head biomechanics.
PURPOSE Previous studies have suggested that the lamina cribrosa (LC) and its surrounding sclera are biomechanically important in the pathogenesis of glaucoma, but many were limited by assumptions of tissue isotropy and homogeneity. Here, we used an improved biomechanical model driven by experimental measurements of scleral and LC collagen fiber organization to more accurately evaluate optic ne...
متن کاملFinite element modeling of optic nerve head biomechanics.
PURPOSE Biomechanical factors have been implicated in the development of glaucomatous optic neuropathy, particularly at the level of the lamina cribrosa. The goal of this study was to characterize the biomechanics of the optic nerve head using computer modeling techniques. METHODS Several models of the optic nerve head tissues (pre- and postlaminar neural tissue, lamina cribrosa, central reti...
متن کاملPremise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head.
We propose that age-related alterations in optic nerve head (ONH) biomechanics underlie the clinical behavior and increased susceptibility of the aged ONH to glaucomatous damage. The literature which suggests that the aged ONH is more susceptible to glaucomatous damage at all levels of intraocular pressure is reviewed. The relevant biomechanics of the aged ONH are discussed and a biomechanical ...
متن کاملReconstruction of human optic nerve heads for finite element modeling.
PURPOSE Glaucoma is a common ocular disease whose pathogenesis is hypothesized to involve biomechanical damage to optic nerve tissues. Here we describe a method for the construction of patient-specific models that can be used to evaluate the biomechanical environment within the optic nerve head. We validate the method using a virtual eye, and demonstrate its use in computing optic nerve head bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 46 11 شماره
صفحات -
تاریخ انتشار 2005